Ocean Deoxygenation Conference | Kiel 2018

Contribution ID: 212 Type: Oral

Nitrogen-carbon connections in a deoxygenating ocean

Friday, 7 September 2018 15:30 (15)

Anthropogenic warming is expected to drive oxygen (O_2) out of the ocean causing a massive perturbation of the nitrogen (N) cycle leading to increasing N removal and oceanic N_2O production via denitrification, which would trigger enhanced N_2 fixation. Our intermediate complexity Earth system model simulations reveal that N_2 fixation does not compensate the enhanced N loss due increased phosphorus (P) limitation. However, emerging feedbacks between the carbon (C) and N cycle can stabilize the N-inventory and N_2O emissions under global warming. The expansion of water column denitrification under ocean deoxygenation is offset by decreasing benthic denitrification brought about by a reduction in export production. This latter is related to ocean warming and yields a decline in oceanic N_2O production, which contributes to the reduction in oceanic N_2O emissions by 2100. Our model simulations support the existence of strong regulatory feedbacks among the O_2 -C-N and P-cycles that maintain N inventory homeostasis and contribute to stabilize climate against anthropogenic changes.

Position

Senior Scientist

Affiliation

GEOMAR

Email Address

alandolfi@geomar.de

Are you a SFB 754 / Future Ocean member?

Yes

Primary author(s): Dr LANDOLFI, Angela (GEOMAR); KOEVE, Wolfgang (GEOMAR, Biogeochemical Modelling); Dr SOMES, Christopher (GEOMAR Helmholtz Centre for Ocean Research Kiel); Prof. OSCHLIES, Andreas (Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR))

Presenter(s): Dr LANDOLFI, Angela (GEOMAR)

Session Classification: 10 Biogeochemical Cycles: Feedbacks and Interactions

Track Classification: 10 Biogeochemical Cycles: Feedbacks and Interactions